Mathematical foundations of infinite-dimensional statistical models

Chapter 3.5 Metric entropy bounds for suprema of empirical processes Chapter 3.5.1 Bracketing 1: The expectation bound

Presented by Ilsang Ohn

December 28, 2018

Bracketing numbers

Definition (The first definition of the bracketing number). For any $\epsilon>0$, the $L^{p}(\mathrm{P})$-bracketing number $N_{\square}\left(\mathcal{F}, L^{p}(\mathrm{P}), \epsilon\right)$ of $\mathcal{F} \subset L^{p}(\mathrm{P})$ is defined as the smallest cardinality of any partition B_{1}, \ldots, B_{N} of \mathcal{F} such that

$$
\mathrm{P}\left[\left(\sup _{f, g \in B_{i}}|f-g|\right)^{*}\right]^{p} \leq \epsilon^{p} \text { for every } i=1, \ldots, N .
$$

g^{*} denotes a measurable cover of a nonnegative, not necessarily measurable function g. Proposition 3.7.1 guarantees its existence.

Bracketing numbers

Definition (The second definition of the bracketing number). For any $\epsilon>0$, the $L^{p}(P)$-bracketing number $N_{[]}\left(\mathcal{F}, L^{p}(P), \epsilon\right)$ of $\mathcal{F} \subset L^{p}(P)$ is defined as the smallest cardinality of any pairs of the functions $\left(f_{i}^{L}, f_{i}^{U}\right), i=1, \ldots, N$ with $f_{i}^{L} \leq F_{i}^{U}$ and $\mathrm{P}\left(f_{i}^{U}-f_{i}^{L}\right)^{p} \leq \epsilon^{p}$ such that for any $f \in \mathcal{F}$, there is $i \in\{1, \ldots, N\}$ such that $f_{i}^{L} \leq f \leq f_{i}^{U}$.

Proposition. The two definitions are equivalent:

$$
N_{[]}^{2 \mathrm{nd}}\left(\mathcal{F}, L^{p}(\mathrm{P}), 2 \epsilon\right) \leq N_{[]}^{1 \mathrm{st}}\left(\mathcal{F}, L^{p}(\mathrm{P}), \epsilon\right) \leq N_{[]}^{2 \mathrm{nd}}\left(\mathcal{F}, L^{p}(\mathrm{P}), \epsilon\right)
$$

Proof Let $B_{i}=\left[f_{i}^{L}, f_{i}^{U}\right]$. Then B_{1}, \ldots, B_{N} is a partition of \mathcal{F} with $\mathrm{P}\left[\left(\sup _{f, g \in B_{i}}|f-g|\right)^{*}\right]^{p}=\mathrm{P}\left(f_{i}^{U}-f_{i}^{L}\right)^{p} \leq \epsilon^{p}$.
Let $\left(f_{i}^{L}, f_{i}^{U}\right)=f_{i} \pm \sup _{f, g \in B_{i}}|f-g|$ for $f_{i} \in B_{i}$. Then $\mathrm{P}\left(f_{i}^{U}-f_{i}^{L}\right)^{p}=2^{p} \mathrm{P}\left(\sup _{f, g \in B_{i}}|f-g|\right)^{p} \leq(2 \epsilon)^{p}$

Bracketing numbers and covering numbers

Proposition. For any $p \in[0, \infty)$,

$$
N\left(\mathcal{F}, L^{p}(\mathrm{P}), \epsilon\right) \leq N_{[}^{1 \mathrm{st}}\left(\mathcal{F}, L^{p}(\mathrm{P}), \epsilon\right) \leq N_{[]}^{2 \mathrm{nd}}\left(\mathcal{F}, L^{p}(\mathrm{P}), \epsilon\right) \leq N\left(\mathcal{F}, L^{\infty}(\mathrm{P}), \epsilon / 2\right)
$$

Proof Let $f_{i}=f_{i}^{L}$. Then for any f, there is f_{i} such that $\mathrm{P}\left\|f-f_{i}\right\|^{P} \leq \mathrm{P}\left\|f_{i}^{U}-f_{i}^{L}\right\|^{P} \leq \epsilon^{p}$.
Let $\left(f_{i}^{L}, f_{i}^{U}\right)=f_{i} \pm \epsilon / 2$ where $f_{i}, i=1, \ldots, N\left(\mathcal{F}, L^{\infty}(\mathrm{P}), \epsilon / 2\right)$ is the minimal $\epsilon / 2$-covering set.

Maximal inequality with the bracketing number

Theorem 3.5.13 Let P be a probability measure on (S, \mathcal{S}) and for any $n \in \mathrm{~N}$, and let X_{1}, \ldots, X_{n} be an independent sample of size n from P. Let \mathcal{F} be a class of measurable functions on S that admits a P-square integrable envelope F and satisfies the $L^{2}(\mathrm{P})$-bracketing condition

$$
\int_{0}^{2} \sqrt{\log N_{[]}\left(\mathcal{F}, L^{2}(\mathrm{P}), \tau\|F\|_{L^{2}(\mathrm{P})}\right)} \mathrm{d} \tau<\infty
$$

Set $\sigma^{2}:=\sup _{f \in \mathcal{F}} \mathrm{P} f^{2}$ and

$$
a(\delta):=\frac{\delta}{\sqrt{32 \log \left(2 N_{[]}\left(\mathcal{F}, L^{2}(\mathrm{P}), \delta / 2\right)\right)}} .
$$

Then for any $\delta>0$

$$
\begin{align*}
\mathrm{E}\left\|\sum_{i=1}^{n}\left(f\left(X_{i}\right)-\mathrm{P} f\right)\right\|_{\mathcal{F}}^{*} \leq & 56 \sqrt{n} \int_{0}^{2 \delta} \sqrt{\log \left(2 N_{\square}\left(\mathcal{F}, L^{2}(\mathrm{P}), \tau\right)\right)} \mathrm{d} \tau \\
& +4 n \mathrm{P}(F \mathbb{1}(F>\sqrt{n} a(\delta)) \tag{1}\\
& +\sqrt{n \sigma^{2} \log \left(2 N_{\square}\left(\mathcal{F}, L^{2}(\mathrm{P}), \delta\right)\right)}
\end{align*}
$$

Compared to Theorem 3.5.4

$$
\nu_{n}(f)=\sqrt{n}\left(\mathrm{P}_{n}-\mathrm{P}\right) f=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(f\left(X_{i}\right)-\mathrm{P} f\right)
$$

Theorem 3.5.4 (Remark 3.5.5)

$$
\mathrm{E}\left\|\nu_{n}\right\|_{\mathcal{F}}^{*} \lesssim\|F\|_{L^{2}(\mathrm{P})} \int_{0}^{1} \sup _{Q: \text { finitely discrete }} \sqrt{\log \left\{2 N\left(\mathcal{F}, L^{2}(Q), \tau\|F\|_{L^{2}(Q)}\right)\right\}} \mathrm{d} \tau
$$

Theorem 3.5.13 (Remark 3.5.14)

$$
\begin{aligned}
\mathrm{E}\left\|\nu_{n}\right\|_{\mathcal{F}}^{*} & \lesssim\|F\|_{L^{2}(\mathrm{P})} \int_{0}^{1} \sqrt{\log \left\{2 N_{[]}\left(\mathcal{F}, L^{2}(\mathrm{P}), \tau\|F\|_{L^{2}(\mathrm{P})}\right)\right\}} \mathrm{d} \tau \\
& =\int_{0}^{\|F\|_{L^{2}(\mathrm{P})}} \sqrt{\log \left\{2 N_{[]}\left(\mathcal{F}, L^{2}(\mathrm{P}), \tau\right)\right\}} \mathrm{d} \tau
\end{aligned}
$$

The two bounds are incomparable in general.

Proof of Theorem 3.5.13

Sketch of proof. First we divide the function f into two parts $f \mathbb{1}(F \leq \sqrt{n} a(\delta))$ and $f \mathbb{1}(F>\sqrt{n} a(\delta))$. The second, we can obtain

$$
\mathrm{E}\left\|\nu_{n} \mathbb{1}(F>\sqrt{n} a(\delta))\right\|_{\mathcal{F}}^{*} \leq 2 \sqrt{n} \mathrm{P}(F \mathbb{1}(F>\sqrt{n} a(\delta))) .
$$

We can now assume that every $f \in \mathcal{F}$ is bounded by $\sqrt{n} a(\delta)$. We combine two devices: a chaining argument and maximal inequalities for finite maxima.

A chaining argument Define two indicator functions $A_{k} f$ and $B_{k} f$ and decompose f as

$$
f-\pi_{q} f=\sum_{k=q+1}^{\infty}\left(f-\pi_{k} f\right) B_{k} f+\sum_{k=q+1}^{\infty}\left(\pi_{k} f-\pi_{k-1} f\right) A_{k-1} f
$$

where $\mathrm{P}\left|f-\pi_{k} f\right|^{2} \leq\left(2^{-k}\right)^{2}$.

Proof of Theorem 3.5.13

Lemma 3.5.12 (Maximal inequality for finite maxima). Let $X, X_{i}, i=1, \ldots, n$, be independent S-valued random variables with common probability law P , and let f_{1}, \ldots, f_{N} be measurable real functions on S such that $\max _{1 \leq r \leq N}\left\|f_{r}-\mathrm{P} f_{r}\right\|_{\infty} \leq c<\infty$ and $\sigma^{2}=\max _{1 \leq r \leq N} \operatorname{var}\left(f_{r}(X)\right)$. Then

$$
\mathrm{E}\left[\max _{1 \leq r \leq N}\left|\sum_{i=1}^{n}\left(f_{r}\left(X_{i}\right)-\mathrm{P} f_{r}\right)\right|\right] \leq \sqrt{2 n \sigma^{2} \log (2 N)}+\frac{c}{3} \log (2 N)
$$

Applying Lemma 3.5.12 Let $N_{k}:=\log N_{[]}\left(\mathcal{F}, L^{2}(\mathrm{P}), 2^{-k}\right)$

$$
\begin{aligned}
\mathrm{E}\left\|\sum_{k=q+1}^{\infty} \nu_{n}\left(\left(f-\pi_{k} f\right) B_{k} f\right)\right\|_{\mathcal{F}}^{*} & \leq \sum_{k=q+1}^{\infty} \mathrm{E}\left\|\nu_{n}\left(\left(f-\pi_{k} f\right) B_{k} f\right)\right\|_{\mathcal{F}}^{*} \\
& \lesssim \sum_{k=q+1}^{\infty}\left[a_{k-1} \log \left(2 N_{k}\right)+2^{-k} \sqrt{\log \left(2 N_{k}\right)}+2^{-2 k+2} / a_{k}\right] \\
& \lesssim \sum_{k=q+1}^{\infty} 2^{-k} \sqrt{\log \left(2 N_{k}\right)} \\
& \leq 2 \int_{0}^{2^{-(q+1)}} \sqrt{\log \left(2 N_{[]}\left(\mathcal{F}, L^{2}(\mathrm{P}), \epsilon\right)\right)} \mathrm{d} \tau
\end{aligned}
$$

We can also bound $\sum_{k=q+1}^{\infty}\left(\pi_{k} f-\pi_{k-1} f\right) A_{k-1}$ and $\pi_{q} f$.

If the class \mathcal{F} is uniformly bounded, then the bound in Theorem 3.5.13 can be improved.

Theorem 3.5.15 Assume that $\|F\|_{\infty}<\infty$ and $P f^{2} \leq \delta$ for any $f \in \mathcal{F}$. Then

$$
\begin{equation*}
\mathrm{E}\left\|\nu_{n}\right\|_{\mathcal{F}}^{*} \leq J_{[]}\left(\delta, \mathcal{F}, L^{2}(\mathrm{P})\right)\left(1+\frac{J_{[]}\left(\delta, \mathcal{F}, L^{2}(\mathrm{P})\right)}{\delta^{2} \sqrt{n}}\|F\|_{\infty}\right) \tag{2}
\end{equation*}
$$

where we denote

$$
J_{[}\left(\delta, \mathcal{F}, L^{2}(\mathrm{P})\right)=\int_{0}^{2 \delta} \sqrt{\log \left(2 N_{\square}\left(\mathcal{F}, L^{2}(\mathrm{P}), \tau\right)\right)} \mathrm{d} \tau
$$

Example: Monotone functions

Proposition 3.5.17. Let \mathcal{F} be the class of monotone functions $f: \mathbb{R} \rightarrow[a, b]$. Then there is an universal constant $A>0$ such that

$$
\log N_{[]}\left(\mathcal{F}, L^{p}(\mathrm{P}), \epsilon\right) \leq A \epsilon^{-1}
$$

for every $p \geq 1, \epsilon>0$ and probability measure P on \mathbb{R}.
Application to density estimation (Example 3.4.5 of [3]). Suppose that the observations are sampled from a nonincreasing density on a compact interval in the real line and let \mathcal{P} be the collection of such densities. Then the MLE \hat{p} over suitable sieves satisfies

$$
\sup _{p \in \mathcal{P}} E\|\hat{p}-p\|_{L^{2}(p)} \lesssim n^{-1 / 3} .
$$

Example: Smooth functions

Corollary 2.7 .2 of [3]. Let \mathcal{X} be a bounded, convex subset of \mathbb{R}^{d} with nonempty interior. Let $\mathcal{H}^{\beta, M}(\mathcal{X})$ be the class of Hölder β-smooth functions whose Hölder norms are less than or equal to M. Then there is an universal constant $A>0$ such that

$$
\log N_{[]}\left(\mathcal{H}^{\beta, M}(\mathcal{X}), L^{p}(\mathrm{P}), \epsilon\right) \leq A \epsilon^{-d / \beta}
$$

for every $p \geq 1, \epsilon>0$ and probability measure P on \mathbb{R}^{d}
Application to binary classification [1]. Assume that $(x, y) \sim P$ where P is a distribution on $[0,1]^{d} \times\{-1,1\}$. Let $\eta(\mathbf{x})=\mathrm{P}(y=1 \mid \mathbf{x})$. Then, the ERM classifier \hat{f} over suitable sieves satisfies

$$
\sup _{\eta \in \mathcal{H}^{\beta}, M\left([0,1]^{d}\right)} \mathrm{E}[\mathrm{P}(y \hat{f}(\mathbf{x})<0)-\mathrm{P}(y \eta(\mathbf{x})<0)] \lesssim n^{-1 /(2+d / \beta)} .
$$

The peeling method to derive rates

For a given loss function $\ell: \mathcal{F} \times \mathcal{X} \rightarrow \mathbb{R}_{+}$, we let

$$
\mathcal{E}\left(f, f^{\prime}\right):=\mathrm{P}\left\{\ell(f, X)-\ell\left(f^{\prime}, X\right)\right\}, \quad \mathcal{E}_{n}\left(f, f^{\prime}\right):=\mathrm{P}_{n}\left\{\ell\left(f, X_{i}\right)-\ell\left(f^{\prime}, X_{i}\right)\right\} .
$$

We assume that a function $f^{\star}:=\operatorname{argmin}_{f} \mathrm{P} \ell(f, X)$ lies on the sieves \mathcal{F}_{n} (i.e., no approximation error). Also assume that for any $f, f^{\prime} \in \mathcal{F}_{n}$ (see [2]),

$$
\begin{aligned}
d^{2}\left(f, f^{\star}\right) & \leq \mathcal{E}\left(f, f^{\star}\right) \\
\operatorname{Var}\left(\ell(f, X)-\ell\left(f^{\prime}, X\right)\right) & \leq d^{2}\left(f, f^{\prime}\right)
\end{aligned}
$$

We let

$$
\mathcal{F}_{n, j}:=\left\{f \in \mathcal{F}_{n}: 2^{j-1} \epsilon_{n} \leq d\left(f, f^{\star}\right)<2^{j} \epsilon_{n}\right\} .
$$

For the ERM (or ML) estimator \hat{f}_{n}, we have that

$$
\begin{aligned}
\mathrm{P}\left(d\left(\hat{f}_{n}, f^{\star}\right) \geq \epsilon_{n}\right) & \leq \mathrm{P}\left(\sup _{f: d\left(f, f^{\star}\right) \geq \epsilon_{n}} \mathcal{E}_{n}\left(f^{\star}, f\right) \geq 0\right) \\
& \leq \sum_{j=1}^{\infty} \mathrm{P}\left(\sup _{f \in \mathcal{F}_{n, j}} \mathcal{E}_{n}\left(f^{\star}, f\right)-\mathcal{E}\left(f^{\star}, f\right) \geq \mathcal{E}\left(f, f^{\star}\right)\right) \\
& \leq \sum_{j=1}^{\infty} \mathrm{P}\left(\sup _{f \in \mathcal{F}_{n, j}} \mathcal{E}_{n}\left(f^{\star}, f\right)-\mathcal{E}\left(f^{\star}, f\right) \geq 4^{j-1} \epsilon_{n}^{2}\right) \\
& \leq \sum_{j=1}^{\infty} \frac{1}{4 j-1} \epsilon_{n}^{2} \mathrm{E}\left[\sup _{f \in \mathcal{F}_{n, j}}\left(\mathcal{E}_{n}\left(f^{\star}, f\right)-\mathcal{E}\left(f^{\star}, f\right)\right)\right]
\end{aligned}
$$

The peeling method to derive convergence rates

Since $\operatorname{Var}\left(\ell(f, X)-\ell\left(f^{\prime}, X\right)\right) \leq d^{2}\left(f, f^{\prime}\right)$,

$$
\mathrm{E}\left[\sup _{f \in \mathcal{F}_{n, j}}\left(\mathcal{E}_{n}\left(f^{\star}, f\right)-\mathcal{E}\left(f^{\star}, f\right)\right)\right] \leq \frac{1}{\sqrt{n}} \int_{0}^{2^{j} \epsilon_{n}} \sqrt{\log \left\{2 N_{[]}\left(\mathcal{L}_{n, j}, L^{2}(\mathrm{P}), \tau\right)\right\}} \mathrm{d} \tau
$$

where $\mathcal{L}_{n, j}=\left\{\ell\left(f^{\star}\right)-\ell(f): f \in \mathcal{F}_{n, j}\right\}$, and moreover,

$$
N_{[]}\left(\mathcal{L}_{n, j}, L^{2}(\mathrm{P}), \tau\right) \leq N_{[]}\left(\mathcal{F}_{n, j}, L^{2}(\mathrm{P}), C \tau\right) \leq N_{[]}\left(\mathcal{F}, L^{2}(\mathrm{P}), C \tau\right)
$$

Assume that

$$
\log N_{[]}\left(\mathcal{F}, L^{2}(\mathrm{P}), \tau\right) \lesssim \tau^{-\rho}
$$

for some $0<\rho<2$. Then

$$
\begin{aligned}
\int_{0}^{2^{j} \epsilon_{n}} \sqrt{\log \left\{2 N_{[]}\left(\mathcal{L}_{n, j}, L^{2}(\mathrm{P}), \tau\right)\right\}} \mathrm{d} \tau & \lesssim \int_{0}^{2^{j} \epsilon_{n}} \tau^{-\rho / 2} \mathrm{~d} \tau \\
& =\left(2^{j} \epsilon_{n}\right)^{1-\rho / 2}
\end{aligned}
$$

Hence,

$$
\mathrm{P}\left(d\left(\hat{f}_{n}, f^{\star}\right) \geq \epsilon_{n}\right) \lesssim \epsilon_{n}^{-\rho / 2-1} / \sqrt{n}
$$

which yields the convergence rate

$$
\epsilon_{n} \geq n^{-1 /(2+\rho)} \log n
$$

References I

[1] Jean-Yves Audibert and Alexandre B Tsybakov. Fast learning rates for plug-in classifiers. The Annals of statistics, 35(2):608-633, 2007.
[2] Pascal Massart. Concentration inequalities and model selection. 2007.
[3] Aad W Van Der Vaart and Jon A Wellner. Weak convergence and empirical processes. Springer, 1996.

