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Bracketing numbers

Definition (The first definition of the bracketing number). For any ε > 0, the
Lp(P)-bracketing number N[](F , Lp(P), ε) of F ⊂ Lp(P) is defined as the
smallest cardinality of any partition B1, . . . ,BN of F such that

P

[(
sup

f ,g∈Bi

|f − g |
)∗]p

≤ εp for every i = 1, . . . ,N.

g∗ denotes a measurable cover of a nonnegative, not necessarily measurable
function g . Proposition 3.7.1 guarantees its existence.
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Bracketing numbers

Definition (The second definition of the bracketing number). For any ε > 0, the
Lp(P)-bracketing number N[](F , Lp(P), ε) of F ⊂ Lp(P) is defined as the

smallest cardinality of any pairs of the functions (f Li , f
U
i ), i = 1, . . . ,N with

f Li ≤ FU
i and P(f Ui − f Li )p ≤ εp such that for any f ∈ F , there is i ∈ {1, . . . ,N}

such that f Li ≤ f ≤ f Ui .

Proposition. The two definitions are equivalent:

N2nd
[] (F , Lp(P), 2ε) ≤ N1st

[] (F , Lp(P), ε) ≤ N2nd
[] (F , Lp(P), ε).

Proof Let Bi = [f Li , f
U
i ]. Then B1, . . . ,BN is a partition of F with

P
[(

supf ,g∈Bi
|f − g |

)∗]p
= P(f Ui − f Li )p ≤ εp .

Let (f Li , f
U
i ) = fi ± supf ,g∈Bi

|f − g | for fi ∈ Bi . Then

P(f Ui − f Li )p = 2pP(supf ,g∈Bi
|f − g |)p ≤ (2ε)p
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Bracketing numbers and covering numbers

Proposition. For any p ∈ [0,∞),

N(F , Lp(P), ε) ≤ N1st
[] (F , Lp(P), ε) ≤ N2nd

[] (F , Lp(P), ε) ≤ N(F , L∞(P), ε/2).

Proof Let fi = f Li . Then for any f , there is fi such that

P‖f − fi‖p ≤ P‖f Ui − f Li ‖
p ≤ εp .

Let (f Li , f
U
i ) = fi ± ε/2 where fi , i = 1, . . . ,N(F , L∞(P), ε/2) is the minimal

ε/2-covering set.
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Maximal inequality with the bracketing number

Theorem 3.5.13 Let P be a probability measure on (S ,S) and for any n ∈ N,
and let X1, . . . ,Xn be an independent sample of size n from P. Let F be a class
of measurable functions on S that admits a P-square integrable envelope F and
satisfies the L2(P)-bracketing condition∫ 2

0

√
log N[](F , L2(P), τ‖F‖L2(P))dτ <∞

Set σ2 := supf∈F Pf 2 and

a(δ) :=
δ√

32 log(2N[](F , L2(P), δ/2))
.

Then for any δ > 0

E

∥∥∥∥∥
n∑

i=1

(f (Xi )− Pf )

∥∥∥∥∥
∗

F

≤56
√
n

∫ 2δ

0

√
log(2N[](F , L2(P), τ))dτ

+ 4nP(F1(F >
√
na(δ))

+
√

nσ2 log(2N[](F , L2(P), δ))

(1)
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Compared to Theorem 3.5.4

νn(f ) =
√
n(Pn − P)f =

1
√
n

n∑
i=1

(f (Xi )− Pf )

Theorem 3.5.4 (Remark 3.5.5)

E‖νn‖∗F . ‖F‖L2(P)

∫ 1

0
sup

Q:finitely discrete

√
log
{

2N
(
F , L2(Q), τ‖F‖L2(Q)

)}
dτ

Theorem 3.5.13 (Remark 3.5.14)

E‖νn‖∗F . ‖F‖L2(P)

∫ 1

0

√
log
{

2N[]

(
F , L2(P), τ‖F‖L2(P)

)}
dτ

=

∫ ‖F‖
L2(P)

0

√
log
{

2N[] (F , L2(P), τ)
}

dτ

The two bounds are incomparable in general.
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Proof of Theorem 3.5.13

Sketch of proof. First we divide the function f into two parts
f 1(F ≤

√
na(δ)) and f 1(F >

√
na(δ)). The second, we can obtain

E‖νn1(F >
√
na(δ))‖∗F ≤ 2

√
nP(F1(F >

√
na(δ))).

We can now assume that every f ∈ F is bounded by
√
na(δ). We combine two

devices: a chaining argument and maximal inequalities for finite maxima.

A chaining argument Define two indicator functions Ak f and Bk f and
decompose f as

f − πqf =
∞∑

k=q+1

(f − πk f )Bk f +
∞∑

k=q+1

(πk f − πk−1f )Ak−1f

where P|f − πk f |2 ≤ (2−k )2.
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Proof of Theorem 3.5.13

Lemma 3.5.12 (Maximal inequality for finite maxima). Let X , Xi , i = 1, . . . , n,
be independent S-valued random variables with common probability law P, and
let f1, . . . , fN be measurable real functions on S such that
max1≤r≤N ‖fr − Pfr‖∞ ≤ c <∞ and σ2 = max1≤r≤N var(fr (X )). Then

E

[
max

1≤r≤N

∣∣∣∣∣
n∑

i=1

(fr (Xi )− Pfr )

∣∣∣∣∣
]
≤
√

2nσ2 log(2N) +
c

3
log(2N)

Applying Lemma 3.5.12 Let Nk := log N[](F , L2(P), 2−k )

E

∥∥∥∥∥∥
∞∑

k=q+1

νn ((f − πk f )Bk f )

∥∥∥∥∥∥
∗

F

≤
∞∑

k=q+1

E ‖νn ((f − πk f )Bk f )‖∗F

.
∞∑

k=q+1

[
ak−1 log(2Nk ) + 2−k

√
log(2Nk ) + 2−2k+2/ak

]

.
∞∑

k=q+1

2−k
√

log(2Nk )

≤ 2

∫ 2−(q+1)

0

√
log
(
2N[](F , L2(P), ε)

)
dτ.

We can also bound
∑∞

k=q+1(πk f − πk−1f )Ak−1 and πqf .
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Maximal Inequalities for small functions

If the class F is uniformly bounded, then the bound in Theorem 3.5.13 can be
improved.

Theorem 3.5.15 Assume that ‖F‖∞ <∞ and Pf 2 ≤ δ for any f ∈ F . Then

E ‖νn‖∗F ≤J[](δ,F , L2(P))

(
1 +

J[](δ,F , L2(P))

δ2
√
n

‖F‖∞

)
(2)

where we denote

J[](δ,F , L2(P)) =

∫ 2δ

0

√
log(2N[](F , L2(P), τ))dτ.
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Example: Monotone functions

Proposition 3.5.17. Let F be the class of monotone functions f : R→ [a, b].
Then there is an universal constant A > 0 such that

log N[](F , Lp(P), ε) ≤ Aε−1,

for every p ≥ 1, ε > 0 and probability measure P on R.

Application to density estimation (Example 3.4.5 of [3]). Suppose that the
observations are sampled from a nonincreasing density on a compact interval in
the real line and let P be the collection of such densities. Then the MLE p̂ over
suitable sieves satisfies

sup
p∈P

E‖p̂ − p‖L2(p) . n−1/3.
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Example: Smooth functions

Corollary 2.7.2 of [3]. Let X be a bounded, convex subset of Rd with
nonempty interior. Let Hβ,M(X ) be the class of Hölder β-smooth functions
whose Hölder norms are less than or equal to M. Then there is an universal
constant A > 0 such that

log N[](Hβ,M(X ), Lp(P), ε) ≤ Aε−d/β ,

for every p ≥ 1, ε > 0 and probability measure P on Rd

Application to binary classification [1]. Assume that (x, y) ∼ P where P is a
distribution on [0, 1]d × {−1, 1}. Let η(x) = P(y = 1|x). Then, the ERM

classifier f̂ over suitable sieves satisfies

sup
η∈Hβ,M ([0,1]d )

E
[
P(y f̂ (x) < 0)− P(yη(x) < 0)

]
. n−1/(2+d/β).
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The peeling method to derive rates

For a given loss function ` : F × X → R+, we let

E(f , f ′) := P{`(f ,X )− `(f ′,X )}, En(f , f ′) := Pn{`(f ,Xi )− `(f ′,Xi )}.

We assume that a function f ? := argminf P`(f ,X ) lies on the sieves Fn (i.e.,
no approximation error). Also assume that for any f , f ′ ∈ Fn (see [2]),

d2(f , f ?) ≤ E(f , f ?)

Var(`(f ,X )− `(f ′,X )) ≤ d2(f , f ′).

We let
Fn,j :=

{
f ∈ Fn : 2j−1εn ≤ d(f , f ?) < 2j εn

}
.

For the ERM (or ML) estimator f̂n, we have that

P
(
d(f̂n, f

?) ≥ εn
)
≤ P

(
sup

f :d(f ,f ?)≥εn
En(f ?, f ) ≥ 0

)

≤
∞∑
j=1

P

(
sup

f∈Fn,j

En(f ?, f )− E(f ?, f ) ≥ E(f , f ?)

)

≤
∞∑
j=1

P

(
sup

f∈Fn,j

En(f ?, f )− E(f ?, f ) ≥ 4j−1ε2
n

)

≤
∞∑
j=1

1

4j−1ε2
n

E

[
sup

f∈Fn,j

(En(f ?, f )− E(f ?, f ))

]
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The peeling method to derive convergence rates

Since Var(`(f ,X )− `(f ′,X )) ≤ d2(f , f ′),

E

[
sup

f∈Fn,j

(En(f ?, f )− E(f ?, f ))

]
≤

1
√
n

∫ 2j εn

0

√
log
{

2N[]

(
Ln,j , L2(P), τ

)}
dτ

where Ln,j = {`(f ?)− `(f ) : f ∈ Fn,j}, and moreover,

N[](Ln,j , L2(P), τ) ≤ N[](Fn,j , L
2(P),Cτ) ≤ N[](F , L2(P),Cτ).

Assume that
log N[](F , L2(P), τ) . τ−ρ

for some 0 < ρ < 2. Then∫ 2j εn

0

√
log
{

2N[]

(
Ln,j , L2(P), τ

)}
dτ .

∫ 2j εn

0
τ−ρ/2dτ

= (2j εn)1−ρ/2

Hence,

P
(
d(f̂n, f

?) ≥ εn
)
. ε
−ρ/2−1
n /

√
n

which yields the convergence rate

εn ≥ n−1/(2+ρ) log n
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